
AD-774 723

NONLINEAR OPTIMIZATION USING THE
GENERALIZED REDUCED GRADIENT METHOD

Leon S. Lasdon, et al

4!

Case Western Reserve University

Prepared for:

Office of Naval Research

October 1973

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

I ,



S Secun,, Ct.'si.,tion DOCUMENT CONTROL DATA- R & D . .2

IS.cctly classification of tift*, body ol sbe.ot. and indexin anfnootlon must o* enfel d wh.n the owverall report is .*.&ed ) .
.IGNA~~c c~sj T (Coporte uth,-)20.REPO)RT SCCUR:TV CLASSIFrICATION

" , NA?,NG ACTV, TV(Corpo,,ate AuthO?) IZa. Tjn,* ;cla:ssi.fied,,',

Case Western Reserve University Unclassified_
2b. GROUP

NIEDOR TITLE

"Nonlinear Optimization Using the Generalized Reduced Gradient Method"

SOESCRIPTIVE NOTES (?)po of report and Inclusive dtdt**)

Technica] Report, 1q73
5 AUTHORIS) (Fi M.. middl. Initial. last name)

Leon S. Lasdon, Richard L. Fox, Margery W. Ratner

a REPORT OATS:,.TTLNCP AE O FRF
7!

en. CONTRAC r OA ;RANT NO. 9s. OGINATORS REPORT NUMBERtS)

N00014-67-A-0404-0010 I
b. PROJECT NO 1

C. 9b. OTNR REPORT NOtSI (Any other numbers that may be Po ,figed

Technical Memorandum No. 325

10 DISTRIOUTION STATEMENT

lynlimited Distribution

II SJPPL1%MENT'A-Y NOTES 12. SPONSORING MILITARY .'C TIVITV

None Office of Naval Research

13. ABSTRACT

Generalized Reduced Gradient, methods are algorithms for
solving nonlinear programs of general structure. This paper
discusses the basic principles of GRG, and constructs a specific
GRG algorithm. The logic of a computer program implementing this
algorithm is presented by means of flow charts and discussion. A
numerical example is given to illustrate the functioning of this
rogram.

ReprodUCOd by

NATIONAl. TECHNICAl
INFORMATION SERVICE
I S OeDarirnli of Commerce

Spirgfteid VA 22151

ey



I

I. "

Nonlinear Optimization Using the Generalized

Reduced Gradient Method

by

Leon S. Lasdon
Richard L. Fox

Margery W. Ratner

Technical Memorandum No. 325

October 1973

I

This report was prepared as part of the activities of the Department
of Operations Research, School of Management and the Solid Mechanics,
Structures, and Mechanical Design Division, School of Engineering, Case
Western Reserve University (under Contract ""4-67-A-0404-0010 with the

Office of Naval Research). Reproduction AVf w[ole or part is permitted for
any purpose by the United States Gove ment.

J(

. . .........



/ -2

2. Basic. eas of GRG

The nlinear progr--.m to be solved is assumed to have the form

*inimize f(X) (1)

subject to gi (X) 0, 1 = l%....m (2)

ad i S - . (3)

whert X is n-vector and i, are given lower and upper bounds ui > A,

We asume m < n since, in rst cases, rn > n implies an infeasible problem 9

or one with a unique solution. - The form (1) - ( is comp'tely general,

since inequality constraints may always be. transformed to equalities, as in (2),

by the addition of slack variables. The vector X contains as components ,uth

the "natural" variables of the probler and these slacks. (
The fundamental idea of GRC is to use the equalities (2) to express

m of the variables, called basic variables, in terms of the remaining n-m noubasic

variables. This is also the way the Simplex Method of linear programming

operates. Let X be a feasible point and let y be the vector of basic variables

and x the nonbasic at X, so that X is partitioned as

X = (y,x), X= (yx) (1)

and the equalities (3) can be written

g(yx) - 0 (5)

where

- (g,'. )  (6)

Assume that the objective f and conscraint functions gi are differentiable.

T In,bj the implicit function theorem, in order that the equations (5) ha t

a solution y(x) for all x in some neighborhood of x, it is .ufficient that

the n x m basis mnatrix ag/'y, evaluated at X be nonsingular.

the
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Assume that it ia. Then the objective may be expressed as a function

of x only:

F(x) = f(y(x),x) 1 (7)

and the nonlinear program is travsformed, at least for x close to x, to

a reduced problem witi' only upper and l4er boun.s:

minimize F(x) (8)

subject to

fNB-- -i (9)

where YI and u4B are the vectors of bounds for x. CRG solves the o-!Rinal

problem (1)-(3) by solving a sequenco of problems of the form (8)-(9).

Such problems may be solved by simple modifications of unconstrained minimi-

zation algorithms. t

For the reduced problem (8)-(9) to yield useful results, it is necessary

that x be free to vary about the current point x. Of course, the bounds

(9) restrict x, but it is edqy to move x in directions which keep these

bounds satisfied. The bounds on the basic variables, however, pose a more

serious problem. If some components o± y are at their bounds, then even a

slight change in x rom x may cause some bound to be violated. To guarantee

that this cannot happen, and to insure the existence of the function y(x),

we assume that the following condition holds:

Nondegeneracy Assumption

At any point X satisfying (2)-(3), there exists a partition of X into

m basic variables y and n-m nonbasic variables x such that

< y < UB (10)

where B and u are the vector of bounds y and

-g/;y is nonsingular (Ii)

qumt-rn is quite mild as we show tter.
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Consider now starting from the feasible point R with basic variables

y and nonbasic variables x, and attempting to solve the reduced problem

(8)-(9). By (7) to evaluate the objective F(x), we must know the values

of the basic variables y(x). Of course, except for linear and a few

nonlinear cases, the function y(x) cannot be determined in closed form.

I
However, y(x) can be computed for any given x by an iterative method which

qsolves the equalities (5). Hence a Drocedure for solving the reduced

problem starting from X.- Y, is

(0) set i = 0
2

(1) Substitute xi into (5) and determine the corresponding values
for YYi' by an iterative tn -d for solving nonlinear eq,-nl.ions

(2) Determine a direction of motion, di, for the nonbasic variables x j
(3) (hoose a step size a. such that

Xi+l = i + i i

This is often dor.e by solving the one dimensional search problem

miniize F(x3 + adi)

with a restricted such that xi + cdi sati~fies the bounds on x. This

one dimensional seprch will require repeated applications of step (1) Ix
to evaluate F for various a values.

(4) Test the cLUIxant point Xi W (y!,xi) fur optimali:y. If not

optimal, set i = i + . and return to (1).

If, in step (1), Lhe value cf one or more components of Yi exceed

their boumds, the iterative procedure must be interrupted. For simplicity,

assume only one basic variable violates a bound. Then this variable must

be mad-- nonbasic and some component of x which Is not on a bound is made basic.

After th- chanpe of basis, we have a new function y(x), a new function F(x),

and a now redureo problem. These ideas are illustrated geometrIcally in
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VAgure 2.1. The initial Point X is on the curve &2 (X) = 0. We have

taken the basic variables as (x3 ,x ), although the only variable that

'cannot be basic is x4, since it is at lower bound of zero. The objective

of the first reduced problem is Fl(x2 ,x4 ), which is just the objective f as

measured on the curve g2 = 0 It is possible that the algorithm minimizing

F1 might release x4 from its lower bound of zero, in which case we would

move interior to 92 = 0. Assume, for purposes of i-lustration, that this

does not happen. Then we move along 92 = 0 as indicated by the arrow until

we hit the curve g, = 0. At this point the slack for gl,x 3 , goes to

zero. Since it is basic, it must leave the basis, to be replaced by one

of the nonbasics, x2 or x4 . Since x4 is zero, x2) becomes basic. Now we

have a new objective, F2 (x 3 ,x4 ) , with x3 and at lower bound of zero. (
The algorithm optimizing F2 will determine that, if either x3 or x 4 is

released from its lower boune, F2 can be decreased. Assume x4 is released

from its bound (actually x3 and x4 might both be released from their bounds).

Tlen the algorithm will begin to minimize F2 , which is simply f as measured

along the curve g, = 0. Motion is towards the x2 axis. Upon reaching it, x,

becomes 7.ro, and another basis change occurs, with x 1 becoming nonbasic

and x4 becoming basic. Then optimization of the new function F3F 1 ,x3)

will terminate at the constrained optimum of f.

The Reduced Gradient

GRG can be implemented without using derivatives of f or the gi.

This requires methods for solving nonlinear equations and for minimizing

nonlinear functions subject to bounds which do not use derivatives. Although

such methods exist, there are a much greatei variety which do require

lerivatives. Th'p efficiency of these is better understood, and their use

ir lare( rrobl-ms is Ietter established,
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Hence we concern ourselves from now on with GRG algorithms which require

first derivatives of f and g.

In mini. ing F using derivatives, we must have a formula for VFC

F is guaranteed to be differentiable if f and g are, and if g/ay is non-

singular, since then the implicit function y(x) is differentiable. ByO7

aF/axi = f/ax +(Of/ay) ~y/ xi (12)

To evaluate 3y/xi, use the fact that, if

gj(y(x),x) - 0, J

for all x in some neighborhood of x, then

dgj/dxi = 0 = (3gj/dy)Tay/lxi + agj/ xi,  .= ...m

or, in matrix form

zg/ay) ay/ax! + ag/axi - 0

Since (3g1ay) is nonsingular at X f
ay/xi = _(ag/ay)-i g/ax B-1 g/ax (13)

Using (13) in (12)

aF/x i = fixi - (f/ay)T B-! Wax- (1.4)

Let

n = (f/ay)T B-1  (15)

As is shown later, the n-vector it is the Kuhn-Tucker multiplier

vector for the constraints g. Using (15), the components of VF are

TIF/'xi " af/axi - a g/Dx i  (16)

Equation (16) reduces to the formula for the relative cost factors

in linear programning [1l if f and all gl are linear. Then, f/x 4 = ci,

;f/ay = cB (the obJe-tive coefficients of the basic variables) and 3g/ax i  Pis

the column of constraint coefficients for xi. The vector u is the simplex

multiplier vector. I.
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Relation of Redftced Gradient Formula and Kuhn-Tucker Conditions

If X is optimal for (1)-(3), and Lf the gradients of all binding

constraints of X are independent (see [2]), then the Kuhn-Tucker conditions

hold at X. To write these, let u be a Lagrange multiplier vector for the

equalities (2), and a and $ be multipliers for the lower and upper bound

constraints respectively. The Lagrangian for (i)--(3) is

L = f + wg + a (I-X) + 8 (-i)

The Kuhn-Tucker conditionawritten in terms of y and x, are

DL/ay - af/ay + ZB - a y + By Y 0 (17)

^L/Ax = af!Dx + Wag/x - a + 0x = 0 (18"

a > , > 0 (19)

adf-x) - B(x-) 0 (20) (
where a y, 8y are subvectors of a and 8 corresponding to the basic variables (
y, and similarly for a . If X is optimal, there exist vectors _-T,

a, T which, together with X, satisfy (17)-(20). Since y is strictly

between its bounds, (20) implies

a B8 M 0
y y

Then (17) implies

- f/3y B-1

so the vector 7 in (15) is the multiplier vector for the equalities (2).

Then (18) may be written

f/x + 9g/x (21)

The left hand side of (21) is simply the reduced gradient, VF(x).

To relate (21) to the problem (8)-(9), if xi is strictly between its bounds

thena 3 = 0 by (20), soxi x=
".F/ xi -0 (2?)
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If x, at lower bound then x 0 so

,F/3x= x > 0 (23)
xi-

while if xi is at upper bound, a 0 so

F/ xi = -8xl < 0 (24)

But (22) - (24) are just the optimality conditions for Lhe reduced problem

(8) - (9). Hence the Kuhn-Tucker conditions for (1) - (3) may be

viewed as optimality conditions for the reduced problem (8) - (9),

and v in the formula for the reduned gradient is the Kuhn-Tucker multiplier

vector. This vector is useful for sensitivity analysis, and GRG provides

it as a by-product of its computations.



Relation of N,:idegeneracy Assumption and LuenbergrE

Constraint Oualification

Let X be an optimal solution to (1) - (3). Luenberger

[21 has shown that a sufficient condition for the Kuhn-Tucker conditions

to hold at X! is that the gradients of all binding constraints be linearly

independent.

Assume that this is the case. Then, at most n of the 2n + m

constraints (1) - (3) can be binding at X° . Since all m of the equalities

(2) are binding, at most n-m of the constraints (3) can be binding, i.e at

most n-m of the variables Xi can be at a bound. Hence there will be at

least m variables X4 satisfying . <i < ui . Consider now the Jacobian

matrix of the binding constraints evaluated by X0 . If all variables not at

bounds are grouped together, this Jacobian has the structure 4
k > m variables n-k variables
not on bounds on bounds

n-k 7-------------------- ----------------

bound
rows 0 n-k

Since this matrix must have all m+(n - k) rows linearly independent, it

mubt have this same number Qf independent columns. Since the n - k

rightmost columns are independent, the submatrix J must contain m

independent columns. Let B be a nonsingular m x m submatrix chosen from

J and let y be the m-vector of riables associated with the columns of B0 ,

wtth x the vpctot cf the remaining n - m variables. Then B 0 <uBu B3

.~ 1C non~ingular.
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That is, the nondegeneracy assumption stated earlier is true at X° , so

it is implied by Luenbergers constraint qualafication. This information

is useful, since Luenberge.- qualification appears to be satisfied at the

optimin, Lndeed at all feasible points, of all but a few pathological

nonlinear programs. However, problems can arise where the binding constraint

gradients become nearly dependent, and then B becomes nearly singular,

and its inversion and other operations with it become numerically unstable.

A computer program implementing GRG must test for this near-singularity

and attempt to correct it if it occurs.

t



3. A GRG Algorithm

in this section we decribe the GRG algorithm developed during the

period Nov. 1972-Nov. 1973. The major differences between this algorithm

and the procedure described by Abadie in [3 ) and [4] are:

1. 7hp algorithm works only with the currently active constraints.
Since, in most problems, not all constraints are active, this
can ease computations considerall. The basis matrix has a roV
for each active constraint, and changes size as constraints are
encountered or dropped. Gradients of inactive constraints are
not required, a significant advantage in problems with many
constraints.

2. The algorithm used to optimize the objective on each constraint
intersection is the Davidon-Fletcher-Powell (DFP' method (3], modi-
fied to account for upper and lower bounds. This should yield
more rapid convergence than the gradient or conjugate gradient
procedures used by Abadie. (

3, A new procedure has been constructed for deciding whether i
to incorporate a constraint into the current constraint basis.
The constraint is incorporated if the one-dimensional
minimum currently being sought is on the boundary of the current
constraint intersection. Mechanisms for determining this effi-

ciently in the context of ORG have been developed.

4. A new basis shange procedure is used. In (2], Abadie makes a
basis change if a basic variable violates one of its bounds during
the Newton iteration. This can lead to "false" basis changes if
the Newton algorithm is not converging, or is convergirg but not
monotonically. We wait until the Noryton algorithm has converged,
then treat the violated bound as a newly encountered constraint,
and apply the procedures in (3) above. This insures that the
objectiie value after a basis change is lower than all previous

values (this is not true in Abadies realization).

5. The one-dimensional search is the core of the algorithm and is
crucal to its efficiency. We have adopted ti-e algorithx described
in L61 to operate within GRG. This procedure is the result of
many years of development, and computational results u-ing it in un-

We UM.Prosent 0m4 discusa f1o h00te of our GRRG a1.orubt4 J&*
-context, discu ss the above ideas in more detail. TheRlgorithn currently

reiuirp, a feasible starting point. Work during the next year will include



designing a phase I procedure, which will find a feasible point or

determine that none exists.

Let X = (y, x) be a feasible vo-nt for the constraints <2) - (3).

Further, suppose that the firat m1 constraints are equalities, and

the remaining m2 are inequalities, with m + m2 = m. That is, the

constraints may be written:

gi(X) = 0, i 1,...,m I

gi(X) > 0, i = ml + l,...,m

We define the index net of binding constraints at X as

IBC = {ilgi(X)- O)

The surface defined by a set of active constraints will be called the

constraint intersection, S:

S = {Xlg 1(X) = Q, i IBC)

GRG moves frem one such surface to another as new constraints become binding

and previously binding constraints become positive. Ir our realization of

GRG, while on a particular constraint intersection, we ignore the positi e

constraints, except for evaluating them at each point to check that they

are still )ositive. The constraint basis at X contains a row for each index

in IBC. Since the slacks of binding constraints are zero (J.e at lower

bounds), there will never be any slacks in the basis. If there are NB

binding constraints, the NB basic variables are all chosen from the n

"natural" variables, XI,.. .,Xn, rhile the n nonbasics are the remaining

n - NB natural variables, plus the NB slacks of the binding constraints.

Use cf Goldfarb Variable Metric Algorithm j
Since GRG requires at least partial solution of a number of reduced

, roblems of the form (8) - (9), each algorithm for solving such problems

.ead to a variant of GRG. Thp choice of algorithm is critical, since once
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GRG approaches an optimm, and no more basis shanges occur, its convergence

rate is that of the algorithm selected. It would be foolish to use the

method of steepest descent, as its convergenze rate is at best geometric,

with a very small convergence ratio for problems whose Hessian at the

optimum is badly condltioned (2]. The conjugate gradient method used

by Abadie is superlinearly convergent [21, but many computational

experiments have shown it to be considerably slower in practice

(in terms of number of .terations) than methods of the variable

metric class [2]. For this reason, we have chosen the variable metric

method of Goldfarb (5], simplified for the special case cf bounded

variables, to solve the reduced problems.

The flow chart entitled "Main GRG Program" illustrates our

adaptation of Goldfarbs algorithm. The algorithm is very much as decribed

in [5], but simplified for the special case of bounded variables (see (7]).

The flow chart is almost exactly as it would be if the only constraints present

were the bounds on the nonbasic variables. All the logic required to deal

with the nonlinear constraints (2) is in the one dimensional search

subroutine on page 2 of the chart. The algorithm chooses search directions

by the formula

di =-Hi VF (xi)

where H4 is an n x n symmetric positive semi-definite matrix. This

matrix projects any vector onto the bounds, i.e, for any vector v, Hv is zero

in the i th position if xi is at a bound. The initialization in block 1,

Dage I, and the updating of block 3, page 2 (which forces row and column r

of H to zero when xr hits a bound) guarantee that H always has this property.

The algorithm will minimize a positive definite quadratic objective, subject

to upper and lower bounds, in a finite number of iterations. If .at the optimum,

nI e n of the variables ace at their bounds, then, once these variables reach
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their bounds, the optimal values of the remaining ones will be found in at

most n - nI iterations. Further, the nonzero rows and columns of H form a 5

positive definite matrix which will converge (in the case of quadratic objective)

to the inverse Hessian of the function of n - nI variables formed by replacing

the n, variables at bounds by the values of those bounds.

Block 2, page 1 of the flow chart, is performed as follows:

The Kuhn-Tucker multiplier for the lower bound constraint on x is Ai = aF/axi,

and for the upper bound X. is at lower (upper) bound and

),i (,u) is negative, then F can be decreased by increasing (decreasing) x,

i.e. by moving away from the bound. In our program, from all variables at

bounds whose multipliers are negative, we choose the variable with the

multinlier of largest absolute value. If this value is iarger than twice

lid, Ii (where ii Ii indicates Euclidean norm). we allow this variable

to leave its bound by setting the corresponding diagonal element of H

(currently zero) to one. This causes Ii di II to increase. We then test

the remaining bvundpJ variables for negative multipliers, and repeat the

above prccedure. The test against ii d I il insures that we do not leave a

constraint subspace until II di 1 i becomes "small enough". This helps to

prevent zigzagging, where we constantly leave and then return t, the ssme

subspace.

Goldfarbs algorithm provides search directions for the one

dimensional search subroutine, in which the variables of the ptoblem are

assigned new values., This subroutine finds a first locaJ minimum for the

problem

minimize F(x + ad)

where F is the reduced objective, 7 the initial values of the nonbasic

variable-, anA d the search direction. The 4teration subscript,

, as boa dropped for convenience. The di-eccion d ic al ',ays a dire!ction



of descent, i.e

T
d VF (X) < 0

The procedure starts with a search for three a values, A,B, and

FC, which satisfy

O<A<B<C

F x + Ad) > F x + Bd)

and
1.

F (x + Cd) > F (x + Bd)

!I Then the interval [A,C] contains a local minimum of F( + ad). In

block 18 of page I of the one dimensional search flow chart, a quadratic

is passed through A, B, and C, with its minimum at D. On page 3 of the

flow chart, the points A, B,C, D are used to initiate an iterative cubic

interpolation process which yields the final a value. f
The logic on the first two pages of the flow chart locates the

points A, B, C. In doing this, the choice of initial step size, a0 ,

[I (block I, page 1), is important. With Goldf-rbs algcrithm or other

variable metric methods, a0 is set equal to the optimal a value from the

previous search except when this causes too large a change in the variables.

The theoretical basis for this is that, as a variable metric converges,

the optimal a values should converge to 1, the optimal step for Newton's

I" Method. Hence the previous optimal step is a good approximation to the

current one. This must be modified when the method is restarted, for example

when a new constraint is encountered* or the basis is changed, since then

i" an optimal step much less than unity is generally taken. Hence, we require

that the change in any nonbasic variable larger than I - 3 ina absolute value

I not exceed .05 times its value, while the change in any variable smaller



-16-

-2
than 10 in absoluce value cannot exceed 0.1. If the largest a value

meeting these conditions is a , then, a, iteration i, a is given by

I

ao = min (ail, I)

The loop 2 - 3 - 4 - 5 halves the step size until a value FB < FA

is achieved, or until SLPFLG = 0. The variable SLPFLG is initialized

at zero in subroutine hNEWG and is set to unity in block 3 of the NE1G

flow chart if a new constraint has been encountered and the minimum along

d is interior to that constraint. The test in block 6 of the one

dimensional search flow chart is false only if the step size has been

halved at least once in 2 - 3 - 4 - 5, in which case K1 is the function

value correspootding to C. The test in block 7 prevents the subroutine

from trying to pass a quadratic through 3 points which are too widely

separated in funcciou value. It also insures that the subroutine will

cut back the step size if a large function value is returned by block

3. This is used to force a cutback when the NEWTON algorithm in block 3

30f
does not converge, by setting FB to 10 . The test on FC in block 12 has

the same purpose. If 1( is too large, then block 8 gererates a new C

point 1/3 of the distance from B to C. Then the loop 8 - 9 - 10 -11 - 12

is traversed until FC is not too large.

With R = 0 (which Qccurs if and only if (a) a K1 or FC which was

too large has never been generatcxi, or (b) SLPFLG = 0, the loop 10 - 14

transforms the points, A, B, C in figure 3.1(a) into those shown in figure

3.1(b). 11e step size is doubled each time until the points A, B, C

bracket the minimum. If Y( or FC ever becomes too large, or if SLPFLG m 1,

R is set to I (block 9). Then (10) - (14) transforms points as shown

in figures 3.2 (a) tbru 3.2(c). Instead of doubling the step, a constant

R - A, is added. Since FC may have been set to 1030



-'

o -- o

-
0

0 0

- - I

Lit

1' ~1



- w --

co1

> 1

00
n . 1~

(~. -0

0'I

C.',.CD

.rc



0

0 0

.

(a) - End point delpted

FO

"-

1~t LL LtL

A 
, Bf

(b) - New 4 point pattern

Fig. 3.3 - Eliminating End Point in Cubic Fit

1'|



I
I

F

I
17
I. III I I (

AEB DC a
1' I

r I

[
I

Figure 3.4

I 14'cj,
L



-17-

I when N ErON did not converge in block 2i, there must be a provision

r for resetting R to 0 when 3 steps of size (C-B)/3 have been taken.

This is accomplished by, blocks 15, 16, and 17.

VThe quadratic interpolation in block 18 yields a fourth point,

D, with function value FM, somewhere between A a;.d C. In block 19, a

cubic polynomial is passed through the 4 points FA, FB, FC, FM, and

its minimum is located at the point E. The optimality tests ia block

20 are passea if the percent difference becween (a) the F values at the

current and previoue interpolated points and (b) the values of F and

the cubic at E are sufficiently small. Currently r = 10-4 . In block

1. 21 the usual situation is as shown in figures 3.3 (a) and 3.3 (b).

Removal of an end point leaves 4 pnints which bracket the minimum and

these are used in the next cubic 'it. If a bracket cannot be formed by f
removal of an end point, the highest end point is discarded and a new

cubic fit is performed. Such a situation is shown in figure 3.4.

If the optimality test in block 20 is passed, and the point E

is less than a, then E is accepted as optimal. Otherwise, F is evaluated

at a in block 22. If its value there is smaller than F(x), -a is returned.

V If not, and FC > FB, the quadratic interpolation block is entered; otherwise,

the subroutine terminates with an error message.

F" The blocks in the one dimensional search flow chart labeled "E valuate

F (x + ad)" are where the basic variables are changed in response to

changes in the nonbasics. As shown in the accompanying flow chart,

J this block contains 2 subroutines. Sutroutine REDOBJ uses a Newton iteration

to find new values for the basic variables y, given the values x + ad for

Ithe non asics. It also checks for violations of currently nonbinding

centraln. and nf 1)ounds on basic variables, usirR subroutine BSCHNG

to deal w!' theo, )ounds,
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Subroutine NBWG decides whether or not to stay on a newly encountered

constraint. We now proceed to discuss these subroutines.

Subroutine REDOBJ (REDuced OBJective) is the first routine discussed

thus far that is not very similar to a procedure for unconstrained minimization.

Its input is a vector of nonbasic variables x = x + cd, where a is the

current trial value of the step size, and x is the vector of nonbasic variable i

at the start of the one dimensional search. It solves the system of N

nonlinear equations

gi (y, x + ad) - 0, i6 IBC

for the NB basic variables y. As in [3] and [43, this is done using the

pseudo-Newton algorithm

Y = - B 1 (X)gB (Yt x + ad), t = 0,1 .....

where gB is the vector of binding constraints.

The algorithm is called pseudo-Newton because B is not re-evaluated at each

step of the algorithm, as in the standard Newton method. When z is given

A
its first trial vaLue in a particular one dimensional search, X is equal to

the feasible point X with which we began the search. As long as Newton

A
converges, X remains equal to X, at least until the search is over. If

A
Newtcn fails to converge, X may be set equal to the most recent feasible

point, and B- is recomputed.

To explain blocks 1 and 2 on page I of the REDOBJ flow chart, consider

the tangent plane to the constraint surface at X. This is the set of all

f _ vectors (a,b) satisfying

(Dg/ay)a + (ag/3x) b 0

I'



-19-

where all partial derivative matrices ars evaluated at X. In GRG, the

change in x, b, is given by

b = ad

The corresponding vector a is called the tangent vector, v. Since any

scale factor multiplying v is unimportant, we may as well take a = 1,

y:elding

v = (ag/y)-i (ag/ax)d (25)

In our program, v is computed at X, the initial point of the one

dimensional search. This vector is used to find initial values, YO, by

the formula

Yo =  y + al v

as illustrated in figure 3.5. Using these initial values, Newton finds

the feasible point Xl. Then, at X,. v is not recomputed. The old v is (
used, but emanating now from X,, to yield the next set of initial values

as

Yo = Yl + (a2 - al)v

UslaW these, Newton finds the point X2 of figure 3.5. This procedure

is repeated until Newton fails to converge (or until the one dimensional

sear-h Is over), whereupon v is recomputed at the last feasible point.

Both this logic and the logic of computing B-1 have the objective

of computing derivatives o f and the binding g,, and of inverting B, only

when absolutely necessary. If Newton converges at each point of a one

dimensional search, then no derivatives or matrix inversions are required

during the search.

Newton is considered to have converged it the condition

NORM max Ig1 (Xt ) I < EPSNEWT
iClBC

i- met wif-'n TTLIM iterations. Currently (using single precision L,
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arithmetic; 8 decimal digits), EPSNEW" - 10- 4 and IZIM = 10. If

NORMS has not decreased in any set :' 5 consecutive iterations (or the

above condition is not met in 10 iterations) Newton has not converged,

and the 2 alternatives on page I are tried, in an effort to achieve

convergence.

The first alternative is tried if the gradients of the objective and

the binding constraints have not yet been computed at the last feasible

point, XPREV. These gradients are evaluated, and an approximation to the

true B1 at XREV is computed, using the current B- 1 (evaluated at some

earlier feasible point) and the partial derivatives evaluated at XPREV.

This approximate inverse is computed as follows:
-1

Let B be the basis matrix evaluated at XPREV, and B 0 the basis inverse

evaluated at some other point. The approximation to B- is based on the

identity

B=B 0 +(B-B) 

-1=B ° (I - B (B - B)) (26)
0 0

Let

-i
A =B (B - B) (27)

0 0
Then, taking the inverse of both sides of (25) yieldsI:-l -4 -1

(I - A) B (28)

If the points at which B and B are evaluated are sufficiently close

-l
together, the norm of A will be less than unity, and (I-A) can be

expanded in a power series:

(I-A) = I + A + A + (29)

This seria. ran b. used to approximate the Newton correction

6 = 1-G (30)

is the vector of binding constraints. Using (28) and (29) in

[I + A + A2 + ........ B
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The ith order approximation toj, Si. is obtained by truncating the series

expansion above at the 
term AiI

10 BlG , - 0,1,2,I 0j=o i

The vectors miay be determined recursively as follows:

B-1G
O B G

00

- (I + A)SO = 0 + Ao

2 + A + A2)',o 3 o + A(I + A) 0 =5+ AS 1

In general

Jj+l -5 0 ' +"S

or using the definition of A in (27)

' 04 S J - B.1 j. (31)

Returning to alternative I on page 2 of the flow chart, this alternative

is implemented by choosing the order of approximation i ( i > 1) and, within

the Newton subroutine, approximating S cs iusing the recursion (31).

For i 1 1, this is the approximation suggested by Abadie in [3] - [4].

If, after trying altenative 1, Newton again fails to converge, alternative

2 is tried. This alternative computes the tine B-1 at XPREV, uses it in

(25) to compute a new tangent vector, and returns to the Newton subroutine. If

Newton still fails to converge, the final alternative is tried: the objective

is set to a very large value (10 30), and we leave subroutine REDOBJ, returning

to the one dimensional search subroutine. The large objective value will cause

the search subroutine to decreace c. This will occur either in block 3

or block 11 of the subroutine. This cutback procedure will continue until

Newton converges. This must napp.en e",cntually, since Newton will converge

if the initial point is close enough to the solution.

-% 1~

- I''i • .n
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IOnce Newton has converged, we check the pcsitive gi constraints to

see if any are now binding or violated. Let the point Newton has obtained

be A A _x = (y(a) , x + d

where g~i( , x + ad) 0- , icIBC

Assume that some nonbinding constraints are violated;

gi(X) < 0, iClV-C

The program attempts to find the point at which the first nonbinding

constraint went to zero. That is, we wish to find the smallest value of

a, a*, such that all constraints in IBC are binding, exactly one

constraint from IVC is binding, and all other constraints in IVC are

positive. Hence a* satisfies

gi (y(a), x + ad) - 0, ieIBC (32)

gk (y(a), x + ad) 0

and

gi (y(a), x + ad) > 0, icIVC, i k

where kcIVC. This is illustrated in figure 3.6 where IVC = (2,3), k 2.

I

I,



Of course, the index k is not known in advance, s, linear interpolation

is used in block 3, page 2, to estimate the values of c*and k. The

Jacobian for (32), J, is

where

w = agk/ay

Tt = (agkl3x) d

and s is an NB component column vector whose elements are (3gil/x)T d

for i 9IBC. Since J involves only adding a border to the current basis

matrix, B, its inverse is easi~y computed if B is known. In our program,

the border vectors w,s,t are evaluated at the last feasible point, XPREV,

and, as a first try, the current B-1 is used, even if it was evaluated at (
a point other than XPREV. The resulting J-1 may be a kind of "hybrid',

but if Newton converges, an inversion of B has been saved. Looking at

figure 3.6, since Newton converged to X, using the current B1 and starting

from XPREV, one would expect it to converge to the point X*, which is closer

to XPREV, even though an additional cons'raint has been added. If Newton

fails to converge, the same three alternatives as before (with minor

modifications - see block 5, page 3) are tried, until convergence is achieved.

Then the remaining constraints in IVC are checked to see if they are positive.

If oqe or more are negative, then the linear inturpolation estimate of which

constraint was violated first was in error. We go back to the linear inter-

polation block, as the first step toward finding a new value of ct*. This

cycle may be repeated a number of times, but the sequence of a* values

should decrease. If not, the procedure is not working and we stop with an

error massage. Otherwise, we leave this section of code with k as the index

cf , nPw bindiny, constraint and * as the a value at which this constraint



23o-'

?~Ev;ou; ~EI\sde~LE)

{ h.rrEgbEcT'cma

0

(fi

I ,,~ a

I ~

/7

I L
I //// //

I .
/ II / /

/ ~ I

4

-~

(o)~C~ )KO

I.
~ ~,j, - F~JD~iG F~~isr V'oLk\mt_(o~3'~Th~\'~



-24-

is binding. f
The last major task in REDOBJ i. to deal with any basic variables

which have violated their bounds. This occurs in subroutine BSCHNG

(bock 4, page 2 of REDOBJ flow chart). Turning to its flow chart, the

first action (block 1. page 1) is to check if any bounds on basic

variables have been violated. Note that, if any g. constraints had been

violated, the basic variables are now equal to their values at the

point X* = (y*, x + c*d). For example, in figure 3.6, the y value at

X* might be below its lower bound. If some basic variables do violate

their bounds, we proceed through essentially the same logic as is used

in dealing with violated g, constraints. The result is a value of a,

C., such that all components of y(ab) except one are stzictly between
0 f

their bounds, with that one, XA, equal to one of its bound values.

Then, after storing the current feasible point as XPREV, we leave

subroutine REDOBJ.

The next subroutine encountered in evaluating the reduced objective

is NEWG. If a new gi constraint and/or a bound on r 'iasic variable has

been made binding in REDOBJ, NEWG decides whether or not it should remain

binding. The behavior of the objective F(x) is the determining factor.

Using figure 3.6 as an example, if the one dimensional minimum of F

occurs for a less than a*, then the new constraint g2 is not made binding.

Th one dimensional minimum lies in the current constraint intersection.

so the step size is reduced, and the search for an optimal a continues.

If, however, F is still decreasing at a*, the one dimensional minimum

is on the boundary of the current constraint intersection. The new

crnstr 'int , is nade binding and the one dimensional search terminates.
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If both a bound on a basic variable and a new gi constraint become binding

in REDOBJ, this logic still applies, but with c* replaced by min (a*, ab).

The program has been designed to make these decisions without using

derivatives. If in block 1, page 1, the objective at min (a*. a) is

larger than that at the last feasible point, then the neu constraint is not

a This is case I of figure 3.7. If the objective is smaller, then

we must determine if case 2a or case 2b of figure 3.7 holds. The reduced

objective is evaluated at a point nine-tenths of the distance between the

last feasible a value and min (a*, a). If the objective value there is

smaller than that at min (a*, b) , case 2b is assumed to hold and the new

constraint is not added. Otherwise case 2 a holds. Either a new

constraint is added or the basis is changed, after which we return to the

start of the main GRG program with a new reduced problem to solve.

The new constraint incorporation or basis change is carried out in

subroutine CONSBS. The input to this subroutine is a list of indices of

variables, the candidate list. In block 2 of the NEWG flow ch-rt, this

list is set equal to the current list of basic variables. Then CONSBS

is callpd. The outputs of CONSBS are (a) a new list of binding constraint

indices (b) a new list of basic variable indices and (c) a new basis inverse

called B!INv in the flow chart of CONSBS. On page 1 of this flow chart,

the array IREM contains the list of rows which remain to be pivoted in.

This is initialized in block 1. The subroutine operates in 2 modes, indicated

by the variable MODE. When MODE - 1, CONSBS will choose pivot columns

from whatever candidate list was input to it. If a basis inverse could

not be constructed from columns in this iandidate list, or if the original

candidate list included all variables (NCAND - N, block 2), MODE is set

to . x'd CONT3, 4ill choose pivot columis from the list of all. admissable 1..

cn,.cmns. A zolumn is admissable if its variable is farther than EPSBOUNDS
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(currently 10-6) from its nearest bound, and if it has not yet been pivoted

in.

The main loop of CONSBS begins at block 3. A pivot row is chosen as

IROW in block 4. The choice of ISV in block 5 is motivated by the desire

to have basic variables as far from their bounds as possible, so that fewer

basis changes will be required. The other criterion influencing the choice

of basic varK'j.es is that the basis matrix should be well-conditioned.

We try to insure this by choosing as a prospective pivot column that index,

!, in ISV yielding

max ITAB (IROW, I)l
fCISV

This is done in block 6. If the element chosen passes 2 tests we pivot

on it (block 8), transforming the Jacobian and entering that column into I
B-1. The column pivoted in is marked inadmissable (block 7), and the

procedure is repeated for each binding constraint until either B-1 has been

constructed (N branch, block 9) or the candidate list has been exhausted

(Y branch, block 10).

The two tests that a pivot element must pass are (a) its absolute

value must be larger than EPSPIVOT (currently 10- ) and (b) the absolute

velue of the ratio of all other elements in the pivot column to the

pivot element must be less than RTOL (currently 100). The first test

insures that we do not pivot on an element that is essentially zero, while

the second protects against the generation of elements of large absolute

value in B- . Such values are sympto:matic of ill-conditioned basis matrices.

If either test is failed while MODE = 1, we simply do not pivot i. the

current row, and move on to the next one.
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if, when mode 1 terminates, B-1 has not yet been constructed, we I

attempt to complete its construction by considering columns not in the

original candidate list. Mode 2 is entered at marker 5of the flow chart.

In block 11, the candidate list, ICAND, is reset to the set of all

remaining admissable columns, MODE is set to 2, and we return to the start

of the main iterative loop. If, in this second phase. a pivot element fails

the absolute value test, we temporarily mark all columns in ISV

inadmissable (by setting their indicator in the IGNORE array

to 1, in block 12) and choose a new ISV array. If all admissable matrix

elements in a row fail the absolute value test, the matrix is considered

to be singular. If a pivot element fails the ratio test in mode 2, it

is deleted from ISV in block 13, and the ISV element with second largest

absolute value is tried, and so on. If all fail, we set ISKIP = I in block

14, which causes us to pivot on the element originally selected, ignoring

the ratio test.

A
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4. A Numerical Example

Consider the problem
22

minimize F(X) = (X I - 1) + X? - 0.8)

subject to
g 1 (X) = X X2 - X3  0
g2 (X) = -X I + X2  -X 4  z 0

g3 (x) -X-x+X 2  -X5 -1 -

x1 > 0, 0 < X2 < 0.8, X3 > 0, X4 > 0, x5 > 0

where X 3, X4 , X 5 are slack variables. The feasible region for this

problem is graphed in figure 4.1, along with contours of constant value

of the objective. The constrained optimum is on the surface G2 
= 0 at the

point X I 
= 0.894, X 2 = 0.8. The starting point is XI = 0.6, X2 = 0.4,

which lies on the line g3 = 0, and X2 is the initial basic variable.

Hence
y-- x2 , x = (xl,x2 ) =- (X x ),B - I =1

The objective of the first reduced problem, F (x), is obtained by solving

93 for X2 , yielding

X 2 =I+ X -X

and substituting this into f, yielding

F (x) = (XI -1)2 + (0.2 + X - XI ) 2

whose gradient at x = (0.6, 0) is

VF(x) = (F/ax I , aF/ax 2 ) = (0, - 0.)

Since X5 is at lower bound, the initial H matrix is (see block 1, page

1, main GRG program flow chart)

1 0)
,(0 0

d - 7 F- (0,0)
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in block 2, page 1 of the main GRG program, ve check if X5 should be

released from its lower bound. Since the Kuhn-Tucker multiplier for

this bound is negative:

X FlBx2 = - 0.8

x2 - X5 is released from its lower bound. The new H is

1 0

H =(

so now

d =-H V F - (0, 0.8)

and we enter the one-dimensional search subroutine with a +.

This initial one dimensional search varies X and X5 according to

x1 = 0.6

5 = 0 + 0.8a

so we move along the vertical line shown in figure 4.1. The initial

step size is chosen to limit the percent change in any variable to less

than 5% or, if a variable is zero, to limit the absolute change in

such variables to be less than 0.1. This latter criterion applies

here, since only X2 is changing, and its initial value is zero. Hence,

the initial a, ao, is chosen such that

0.8a = 0.1

or

a = 0.125

The sequence of a and objective values generated by the one dimensional

search Is:

a oblective

0 0.32
0.125 0.25

10.250 0.20
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The sequence of points generated is shown as points 1, 2, 3 in figure

4.1. For a = 0.?50, X1 = X2 = 0.6, which lies on the constraint = 0.

The fact that g! has become binding is detected in block 6, page 2 of

REDOBj. Since the reduced objective is lower at a = 0.250 than at

the previous point, the N branch is taken in block I of NEWG. The

reduced objective is computed at a - 0.2375, and since its value there,

0.2041,is larger than the value at a = 0.250, the one dimensional

minimum over the interval (0, 0.250] is assumed to occur at a = 0.250,

i.e case 2a of figure 3.7 holds. A new basis is constructed in

subroutine CONSBS, which yields

IBC = {i}

basic variable y = X2

nonbasic variables x = (X, x2) = (XI , X3)
B-1 = (-I)

Control is then transferred back to point1 page 1, of the main GRG

flow chart, and the second major iteration begins,

Since X3 is at lower bound, H is set to

The reduced gradient at x = (0.6, 0) is

VF (-1.2, 0.4)

so

d = -HVF - (1.2, 0)

No variables are released from their -ounds, c = +, and the one

dimensional search begins, varying the nonbasics according to

v 1 0.", + 1.2a±

0I
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This corresponds to motion along the line g, 0. The sequence of

a and objective values generated is

a 6bjective
0 0.2

0.0251 0.1658
0.05 0.1352
0.10 0.0848

0.20 2 
< 0.8

.. .violated

Figure 4.1 shows the corresponding values of X1 and X2 as points

5 thr-- 8. The last a value, a = 0.20, yields X1 = 0.84, X2 = 0.84,

which violates the upper bound on X2. This is detected in REDOBJ by

subroutine BSCHNG, which attempts to satisfy the upper bound by

solving the system

g1 (y, x + ad) = 0.6 + 1.2a - X2 = 0

x2 = 0.8

which yields a = 0.166, corresponding to point 9 of figure 4.1. The

objective value at point 9 is 0.0400, which is smaller than the value of

0.848 at the last feasible point, point 7. Hence, in NEWG, we take

the N branch in block i, and evaluate F at a = 0.160 in the next block,

(point 10, figure 4.1) yielding F = F = 0.0433. This is larger than

the value at point 9, so 9 is accepted as the minimum, and subroutine

CONSBS is called. This yields a new set of basic variables, and a new

basis as follows:

IBC = (1)

basic variables y = XI

nonbasic variables x = (X2 , X3 )

-i
B =(i)

After leaving CONSBS, we return to page I of the main GRG flow chart

to begin the third major iteration.

qlnce both nonbasic variables are at upper bounds, H is set

," ze'ro atrix. To obtain the current reduced objective, we solve
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the binding constraint for tl.e basic variable in terms of the nonbasic:

(X) X - - X3 - 0

so

xl = X2 + X3

Substituting the above into the objective yields the reduced objective as

F(x) = (X2 +X 3 - 1) 
2 +(X-0.8) 2

whose gradient at X2 
f 0.8, X3  0 is

VF = (-0.4, - 0.4)

In block 2, page 1 of the main GRG program, X3 has a negative multiplier

with value -0.4, so it is released from its lower bound.

H His set to H

and the search dire.ztion is

d =-HVF = (0, 0.4)

We begin the one dimensional search, with the nonbasics varied

according to

x2 = 0.8

x = 0 + (o.4)a

The a and objective values generated by this search are

I _ obective

0 0.04
0.16 0.018
0.32 violated,

The corresponAing values of XI and X2 are shown as points 11 and 12

in figure 4.1. Subroutine REDOBJ detects the violation of g2 , and

attampts to make g2 binding by solving the system

i x + ad) = X1 - 0.8 - 0.4a = 0
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2I
g2 (y x + ad) = -Xl + 0.8 = 0

This is accomplished in one iteration of Newton's method, starting

from initial values

(X1 , c) = (0.893, 0.234)

(computed in block 3, page 2 of REDOBJ), with inverse Jacobian

.728a K 2 .50  -1.44

The final values are XI = 0.894, c = 0.236 which corresponds to point

13 of figure 4.1. The objective value at that point is 0.0111* which

is lower than the value at the last feasible point, point 11. Hence,

in NEWG, the objective is evaluated at point 14, which is 0.9 of (
the distance between points 11 and 13, corresponding to a - 0.2285.

A
The value there is F - 0.0117, which is larger than the value at point

13, so subroutine CONSBS is called to construct a new basis. The

results are

IBC = {2)

basic variables y = X1

nonbasic variables x = (X2, X4 )

B = -0.5590

Returning to page 1 of the main GRG program flow chart, the

reduced gradient is

VF = (-0.118, 0.118)

Since X2 is at upper boumd and X4 at lower bound, the Kuhn-Tucker

multipliers for these bounds are

1u = F/ 2 = 0.118 4

= 'F/X4 = 0.118

2I
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Since both are positive, point 13 is optimal.I
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